

Biological Forum – An International Journal

13(3): 123-126(2021)

ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239

Effect of different Plant Growth Regulators on Growth, Canopy and Flowering of Litchi (*Litchi chinensis* Sonn.) cv Purvi

Aditya Gaurha¹*, V.M. Prasad², Vijay Bahadur³ and Samir E. Topno⁴

¹MSc. Scholar, Department of Horticulture, NAI, SHUATS, Prayagraj, (Uttar Pradesh), India.
 ²Professor, Department of Horticulture, NAI, SHUATS, Prayagraj, (Uttar Pradesh), India.
 ³Associate Professor, Department of Horticulture, NAI, SHUATS, Prayagraj, (Uttar Pradesh), India.
 ⁴Assistant Professor, Department of Horticulture, NAI, SHUATS, Prayagraj, (Uttar Pradesh), India.

Corresponding author: Aditya Gaurha*) (Received 21 May 2021, Accepted 20 July, 2021) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: In present study of different levels of foliar application in Litchi was carried out in Horticulture Research Farm, Shuats, Prayagraj, UP, India for different levels of plant growth regulators. GA₃ (30 and 50ppm), NAA (30 and 50ppm) and CCC (30 and 50 ppm) have significant effect on plant height. The maximum plant height (132.62, 140.29, 150.22, 157.80, 165.21 and 191.01) at 30, 60, 90, 120, 150 and 180 DAT was found in T₂ 50 ppm (GA₃) followed by T₁30 ppm (GA3). The maximum plant canopy (45.25, 49.50, 53.29, 58.46, 68.43 and 88.18) at 30, 60, 90, 120, 150 and 180 DAT was found in T₂ 50 ppm (GA₃) followed by T₁30 ppm (GA3). Maximum chlorophyll (67.70SPAD meter) was found in T₂ 50 ppm (GA₃) followed by T₁30 ppm (GA3), T₄50 ppm (NAA). The maximum number of panicle per plant (9.34) was found in T₂50 ppm (GA₃) followed by T₁30 ppm (GA3). The research conducted will help to evaluate the better growth regulator for canopy and flowering in litchi. This will in turn help the plant to yield more better Quality fruits.

Keyword: Chlorophyll, Plant Height, NAA, Significant.

INTRODUCTION

Litchi (Litchi chinensis Sonn.) is one of the important subtropical fruits of India. It is a member of the family Sapindaceae (or soapberry family) and sub-family Nepheleae. Fruit cracking is the major limiting factor for the successful cultivation of litchi, especially in early maturing cultivars. Inadequate moisture during the early period of fruit growth results in the hardening of skin and later on it laid high inelastic pressure on the fruit skin due to rapid aril growth enforced following irrigation. The cracked fruits are not fit for marketing. Improper balance of Plant bio-regulator (PBR) and short fluctuation in day and night temperature coupled with heavy irrigation after dry spell and temperature higher than 38°C and relative humidity less than 60 per cent are favourable for cracking Kanwar and Nijjar (1975).

Plant growth hormones play important role in the integrated developmental activities of the fruits, yield as well as quality. Exogenous application of plant bio regulators in small quantities has become an important component for inhibiting or modifying the physiological processes by replacing or supplementing the endogenous hormones when their levels are below than required to bring a positive change in the course of plant development, thereby regulating different aspects such as fruit drop, quality and yield Rachna and Singh (2017).

MATERIAL AND METHODS

The experiment was conducted in Randomized Block Design . The transplanting of the litchi crop was done on 1^{st} September 2015. The Research trial having 6 treatments in 3 replications. The allocation of the different treatments of the individual newly growth litchi planted plots of field using random number in each replication. With the spacing of 3.0×2.0 m. The treatment combination listed in Table 1. The observation was recorded for Plant height, Plant canopy, Chlorophyll measurements, different plant growth regulators on number of panicle per plant of Litchi. Different plant growth regulators on early date of flowering appearance of Litchi.

Table 1: Treatment combinations of the experiment.

Sr. No.	Treatment Symbols	Treatment Combination
1.	T_1	30 ppm (GA3)
2.	T_2	50 ppm (GA3)
3.	T ₃	30 ppm (NAA)
4.	T_4	50 ppm (NAA)
5.	T ₅	30 ppm (CCC)
6.	T ₆	50 ppm (CCC)

RESULT AND DISCUSSION

The plant height at 30, 60, 90, 120, 150 and 180 DAT of Litchi (Litchi chinensis Sonn.) cv Purvi as influenced by different levels plant growth regulators of foliar spray of GA₃ (30 and 50ppm), NAA (30 and 50ppm) and CCC (30 and 50 ppm) and their interaction presented in Table 2. The data shown that foliar plant growth application of different levels of regulators GA₃ (30 and 50ppm), NAA (30 and 50ppm) and CCC (30 and 50 ppm) have significant effect on plant height(cm) at 30, 60, 90, 120, 150 and 180 DAT. The maximum plant height (132.62, 140.29, 150.22, 157.80, 165.21 and 191.01) at 30, 60, 90, 120, 150 and 180 DAT was found in T_2 50 ppm (GA₃) followed by T₁30 ppm (GA3), T₄50 ppm (NAA),T₃30 ppm (NAA) and $T_{6}50$ ppm (CCC). However minimum plant height (117.30, 128.47, 134.43, 140.39, 148.48 and 163.94) 30, 60, 90, 120, 150 and 180 DAT was recorded T₅30 ppm (CCC). Similar finding were reported by Tanushree et al., (2019); Samima et al., (2016).

The plant canopy (cm) at 30, 60, 90, 120, 150 and 180 DAT of Litchi (Litchi chinensis Sonn.) cv Purvi as influenced by different levels plant growth regulators of foliar spray of GA₃ (30 and 50ppm), NAA (30 and 50ppm) and CCC (30 and 50 ppm) and their interaction presented in Table 3. The data shown that foliar application of different levels of plant growth regulators GA₃ (30 and 50ppm), NAA (30 and 50ppm) and CCC (30 and 50 ppm) have significant effect on plant canopy (cm) at 30, 60, 90, 120, 150 and 180 DAT. The maximum plant canopy (45.25, 49.50, 53.29, 58.46, 68.43 and 88.18) at 30, 60, 90, 120, 150 and 180 DAT was found in T_2 50 ppm (GA₃) followed by T_1 30 ppm (GA3), T₄50 ppm (NAA), T₃30 ppm (NAA) and T₆50 ppm (CCC). However minimum plant canopy (38.62, 44.34, 48.30, 52.46, 58.55 and 64.00) 30, 60, 90, 120, 150 and 180 DAT was recorded T_530 ppm (CCC). Similar findings by Kaur (2020).

Effect of different plant growth regulators on chlorophyll (SPAD meter) of Litch influenced by different levels plant growth regulators of foliar spray of GA_3 (30 and 50ppm), NAA (30 and 50ppm) and CCC (30 and 50 ppm) and their interaction presented in

Table 4. The data shown that foliar application of different levels of plant growth regulators GA₃ (30 and 50ppm), NAA (30 and 50ppm) and CCC (30 and 50 ppm) have significant effect on chlorophyll (SPAD meter). The maximum chlorophyll (67.70SPAD meter) was found in T_2 50 ppm (GA₃) followed by T_1 30 ppm (GA3), T_450 ppm (NAA), T_330 ppm (NAA) and T_650 ppm However (CCC). minimum chlorophyll T₅30 (54.66SPAD meter) was recorded ppm (CCC).also reported by Sukhjit (2017); Lal and Das (2017).

The number of panicle per plant of Litchi as influenced by different levels plant growth regulators of foliar spray of GA₃ (30 and 50ppm), NAA (30 and 50ppm) and CCC (30 and 50 ppm) and their interaction presented in Table 5. The data shown that foliar application of different levels of plant growth regulators GA₃ (30 and 50ppm), NAA (30 and 50ppm) and CCC (30 and 50 ppm) have significant effect on number of panicle per plant. The maximum number of panicle per plant (9.34) was found in T_2 50 ppm (GA₃) followed by T_130 ppm (GA3), T_450 ppm (NAA), T_330 ppm (NAA) and T_650 ppm (CCC). However minimum number of panicle per plant (6.55) was recorded T₅30 ppm (CCC). Similar finding by Mishra et al., (2017).

Effect of different plant growth regulators on early date of flowering appearance of Litchi as influenced by different levels of plant growth regulators of foliar spray of GA₃ (30 and 50ppm), NAA (30 and 50ppm) and CCC (30 and 50 ppm) and their interaction presented in Table 6. All the treatment that had their early date of flowering appearance in 21^{st} Feb 2021. The data on the effect of plant growth regulators on date of flowering appearance.

CONCLUSION

Thus it can be concluded that the maximum number of panicle per plant (9.34) was found in T_2 50 ppm (GA₃) followed by T_1 30 ppm (GA3), T_4 50 ppm (NAA), T_3 30 ppm (NAA) and T_6 50 ppm (CCC). However minimum number of panicle per plant (6.55) was recorded T_5 30 ppm (CCC). Thus these treatment will happen for the better management of canopy and flowering in Litchi.

 Table 2: Effect of different plant growth regulators on plant height (cm) of Litchi (Litchi chinensis L.) cv.

 Purvi.

Treatment No.	Treatments Combinations	Plant height (cm)						
i reatment No.		Initial	30 Days	60 Days	90 Days	120 Days	150 Days	180 days
T ₁	30 ppm (GA3)	107.38	130.27	138.32	147.26	154.79	164.43	182.78
T ₂	50 ppm (GA ₃)	106.67	132.62	140.29	150.22	157.80	165.21	191.01
T ₃	30 ppm (NAA)	112.17	128.53	135.32	153.19	156.79	161.62	179.43
T_4	50 ppm (NAA)	109.67	125.65	134.46	149.70	157.76	163.21	182.15
T ₅	30 ppm (CCC)	112.64	117.30	128.47	134.43	140.39	148.48	163.94
T ₆	50 ppm (CCC)	112.99	118.42	130.33	138.51	145.42	150.20	169.55
F-Test		-	S	S	S	S	S	
C.D.at 0.5%		-	0.344	0.432	4.223	0.510	0.178	1.786
S.Ed (+)		-	0.154	0.194	1.895	0.229	0.253	0.802

Gaurha et al.,

Treatment	Treatments	Plant canopy (cm)						
No.	Combinations	Initial	30 Days	60 Days	90 Days	120 Days	150 Days	180 Days
T ₁	30 ppm (GA3)	37.49	40.29	48.56	52.36	57.49	67.29	82.11
T ₂	50 ppm (GA3)	42.17	45.25	49.50	53.29	58.46	68.43	88.18
T ₃	30 ppm (NAA)	49.23	44.96	47.35	50.39	56.41	66.78	73.96
T_4	50 ppm (NAA)	49.01	44.30	48.42	51.31	55.20	64.40	77.24
T ₅	30 ppm (CCC)	40.82	38.62	44.34	48.30	52.46	58.55	64.00
T ₆	50 ppm (CCC)	51.10	39.39	45.50	49.39	53.40	60.30	68.22
	F-Test	-	S	S	S	S	S	S
	C.D.at 0.5%	-	0.900	1.334	0.174	0.240	0.276	2.697
	S.Ed (+)	-	0.404	0.599	0.078	0.108	0.124	1.211

Table 3: Effect of different plant growth regulators on plant canopy (cm) of Litchi (*Litchi chinensis* L.) cv. Purvi.

 Table 4: Effect of different plant growth regulators on chlorophyll (SPAD meter) of Litchi (Litchi chinensis

 L.) cv. Purvi.

Treatment No.	Treatments Combinations	Chlorophyll (SPAD meter)		
T1	30 ppm (GA3)	64.72		
T ₂	50 ppm (GA3)	67.70		
T ₃	30 ppm (NAA)	58.45		
T ₄	50 ppm (NAA)	56.62		
T ₅	30 ppm (CCC)	52.42		
T ₆	50 ppm (CCC)	54.66		
	F-Test	S		
	C.D.at 0.5%	0.592		
	S.Ed (<u>+</u>)	0.266		

 Table 5: Effect of different plant growth regulators on number of panicle per plant of Litchi (Litchi chinensis

 L.) cv. Purvi.

Treatment No.	Treatments Combinations	Number of panicle per plant
T_1	30 ppm (GA3)	8.64
T_2	50 ppm (GA3)	9.34
T ₃	30 ppm (NAA)	7.40
T_4	50 ppm (NAA)	7.86
T ₅	30 ppm (CCC)	6.55
T ₆	50 ppm (CCC)	6.67
	F-Test	S
	C.D.at 0.5%	0.352
	S.Ed (<u>+</u>)	0.158

Table 6. Effect of different plant growth regulators on date of flowering appearance of Litchi (Litchi chinensis L.) cv. Purvi

Treatment No.	Treatments Combinations	Early date of flowering appearance
T ₁	30 ppm (GA3)	24 th Feb 2021
T ₂	50 ppm (GA3)	21 st Feb 2021
T ₃	30 ppm (NAA)	6 th March 2021
T ₄	50 ppm (NAA)	2 nd March 2021
T ₅	30 ppm (CCC)	20 th March 2021
T ₆	50 ppm (CCC)	15 th March 2021

REFERENCES

- Kanwar, J. S., & Nijjar G. S. (1975). Litchi cultivation in the Punjab problems prospects. *Punjab Hort. J.*, 15: 9-13.
- Kaur, S. (2017). Effect of Micronutrients and Plant Growth Regulators on Fruit Set, Fruit Retention, Yield and Quality Attributes in Litchi Cultivar Dehradun. *Chem. Sci. Rev. Lett.*, 6(22), 982-986.
- Kaur, S. (2020). Effect of Foliar Feeding of Plant Growth Regulators on Vegetative Growth, Yield and Quality of Phalsa (*Grewia subinaequalis* DC) Int. J. Curr. Microbiol. App. Sci., 9(6): 3209-3220.
- Lal, N., & Das, R.P. (2017). Effect of Plant Growth Regulators on Yield and Quality of Guava (*Psidium* guajava L.) cv. Allahabad Safeda. Int. J. Curr. Microbiol. App. Sci., 6(5): 857-863.
- Mishra, N. K., Kholiya, K., & Tewari, R. (2017). Effect of plant bio-regulators on quality and yield of litchi

(Litchi Chinensis Sonn.) Cv. Rose Scented. IJCS, 5(6), 36-38.

- Rachna, A. & Singh Nav Prem (2017). Growth Regulators for Yield and Quality Enhancement in Litchi (*Litchi chinensis* L) - A Review. Int. J. Curr. Microbiol. App. Sci., 6(8): 2152-2159.
- Samima Sultana, Ganesh Das, Bhabani Das, Rudra B. C. (2016). Evaluation of various plant growth regulators in flower and fruit setting of litchi. *International Journal of Green Pharmacy*, Oct-Dec 2016 (Suppl)10 (4), S1.
- Tanushree Saha, Bikash Ghosh, Sanjit Debnath, Subhasis Kundu & Ajoy Bhattacharjee (2019). Effect of Plant Growth Regulators on Growth, Yield and Quality of Strawberry (Fragaria × ananassa Duch.) cv. Winter Dawn in the Gangetic Alluvial Region of West Bengal, India. Int. J. Curr. Microbiol. App. Sci., 8(3): 1706-1712.

How to cite this article: Gaurha, A., Prasad, V.M., Bahadur, V. and Topno, S.E. (2021). Effect of different Plant Growth Regulators on Growth, Canopy and Flowering of Litchi (*Litchi chinensis* Sonn.) cv Purvi. *Biological Forum – An International Journal*, *13*(3): 123-126.